


Learning representations

iN self-supervised manner
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An compressed low dimensional
representation of the input.




Representations




Machine Learning
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Deep Learning

Feature extraction + Classification




,Classical’ feature extraction
Max

16.0

. Number Peaks

£
|

14.5

Median

14.0

= Mean
13.5
Time series can be
represented by its features: 0 (
min, max, median, number 125 V
& s N \‘)’-QUQQ \?590.90 1\.90,‘00 .

of peaks etc.

12.0

o \
o° oo

\iB AL




Deep Learning learns layers of features

object parts (combination of edges) object models
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Slide by Eduard Tyantov, https://ppt-online.org/354650
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Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixedda) Parts (layers mixed4b & mixeddc) Objects (layers mixed4d & mixedde)
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Deeper layers -> more complex features
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construct representation Work on representations
(,features extraction”)
often hard and universal part often simpler and more specific part




Feature extractor ,backbone” in transfer learning

TRAINING FROM SCRATCH
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Feature extractor ,backbone” in detection
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Face recognition
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Improve representation layer by layer




Language embeddings
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Representations

Protein structure
Language
Time series

Face recognition

Images




Representations

Much smaller than input space

Contain information relevant for the task

Unreadeable — black box

We may work in latent space:
o Similar input maps to similar representation (e.g. different view points)

o Similar representations give similar output (VAE)

o Distribution in latent space
o Sometimes directly interpretable directions




Representations

Much smaller than input space

Contain information relevant for the task

Unreadeable — black box

We may work in latent space: USUALLY BY ADDING PENALTY (extra term in loss function)

o Similar input maps to similar representation (e.g. different view points)
o Similar representations give similar output (VAE)
o Distribution in latent space

o Sometimes directly interpretable directions




Autoencoders




Reconstructed

L et e Ideally they are identical. ------------------ > input

X~ x

Bottleneck!
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An compressed low dimensional
representation of the input.

Two distinct neural networks
(together: autoencoder)




Reconstructed
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An compressed low dimensional
representation of the input.

Model type adequate for input

Input:

* image

« tabular data
« time series




Reconstructed

L et e Ideally they are identical. ------------------ > input
X = X' \
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An compressed low dimensional may be tricky
representation of the input.




Target different from the input
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Reconstructed

e Ideally they are identical. ------------------ > input
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An compressed low dimensional
representation of the input.

|

Much lower dimension than the input,
yet most of relevant information is present

Model learns the effective coding (compression) for
given data
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An compressed low dimensional
representation of the input.
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Additional requirements on the latent space
may be given, such as:
 Distribution of latent space representations
 similar latent (z) -> similar reconstruction (x’)

Requirements are usually imposed by adding
relevant loss terms




Reconstructed

L et e Ideally they are identical. ------------------ > input
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An compressed low dimensional
representation of the input.
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In Variational Autoencoders (VAE):

 Distribution in the latent space representations is
preferred to be Normal(0,1)

« Latent space vector for reconstruction (decoding)
is sampled from vicinity of encoded vector z




VAE

mean of distribution

sample generated from N(u, o)
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VAE

~input representation”

disturbed ,input representation”
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,noise strength”

Loss = reconstruction loss + penalty for u, e deviation from N(0,1)




Applications

Anomaly detection
Pretraining
Denoising

Downstream analysis (dimensionality reduction), VAE preferred :
> Visualization

o Clustering

o Any model with reduced number of features

Generative model (VAE)




Today workshop




Workshop contents

Introduction to GPU computing
Autoencoder step by step
Anomaly detection

KNN on latent space

Denoising autoencoder




Workshop aims

Feel confident with building and training models in PyTorch
Hands-on experience autoencoders

Be able to use AE for anomaly detection

Get feeling of latent space (representations)




Good luck!




