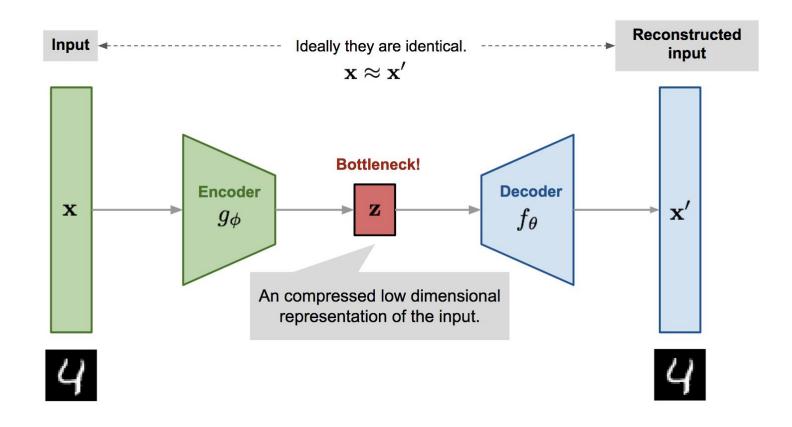
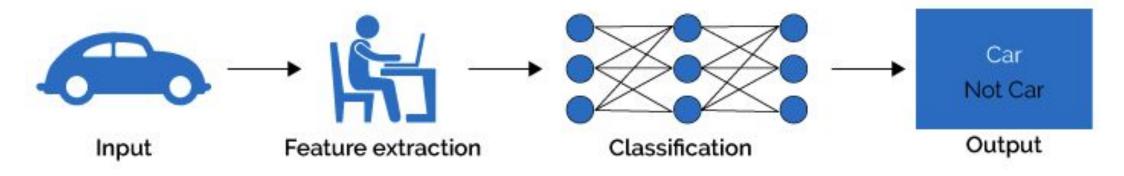
Autoencoders

WORKSHOP ON MACHINE LEARNING TECHNIQUES SPRING 2023

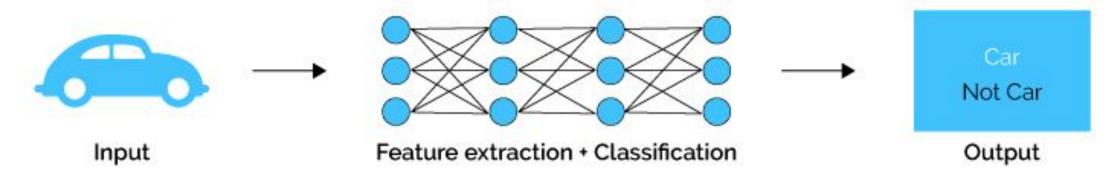
Learning representations in self-supervised manner



Machine Learning

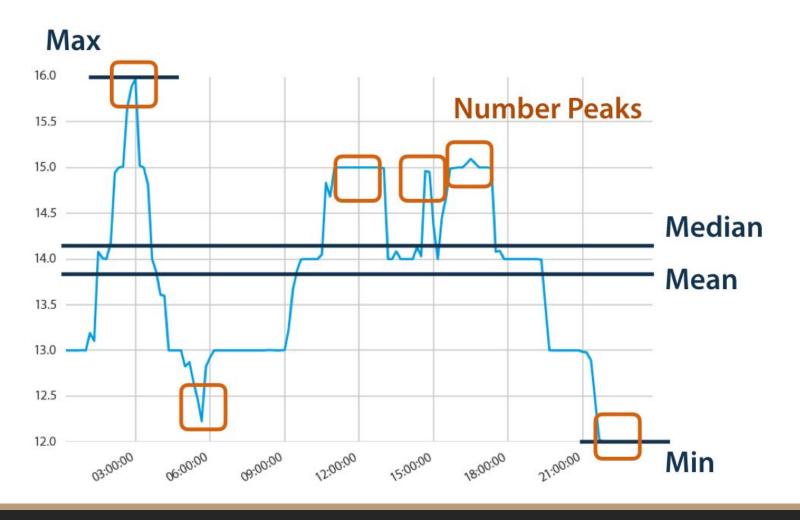


Deep Learning

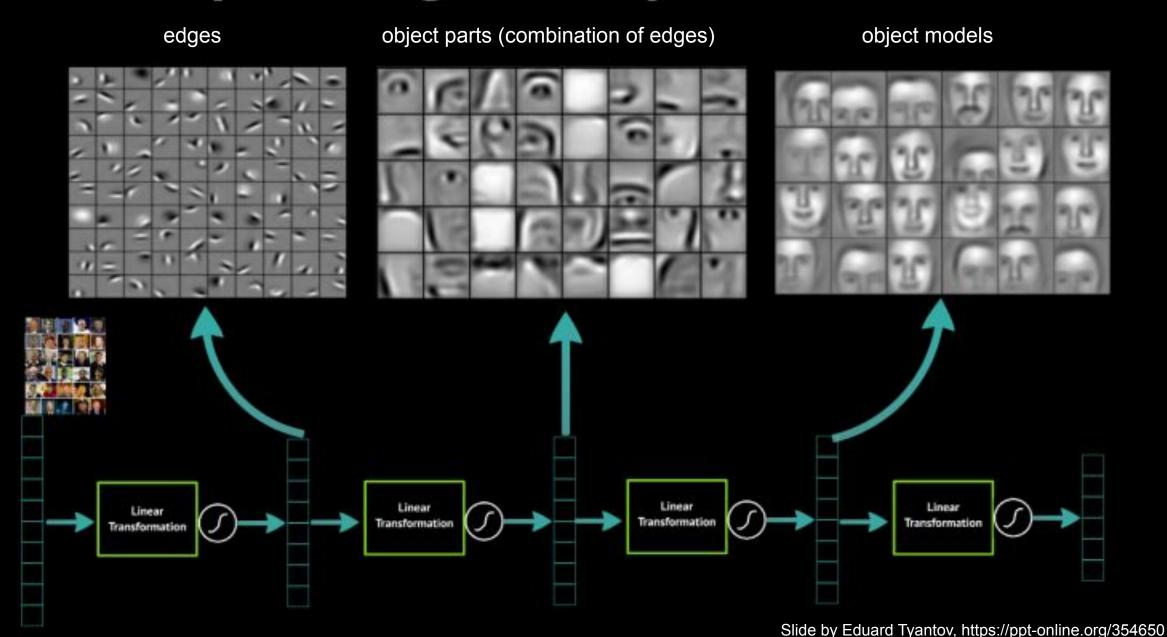


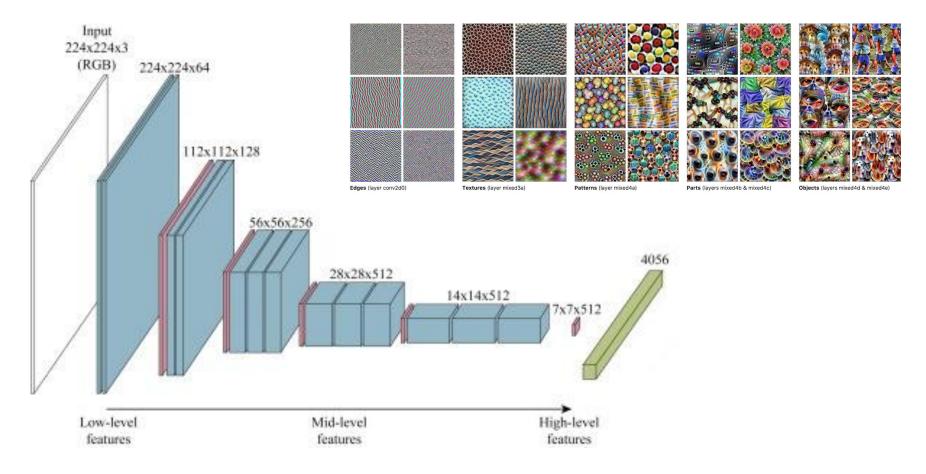
"Classical" feature extraction

Time series can be represented by its features: min, max, median, number of peaks etc.

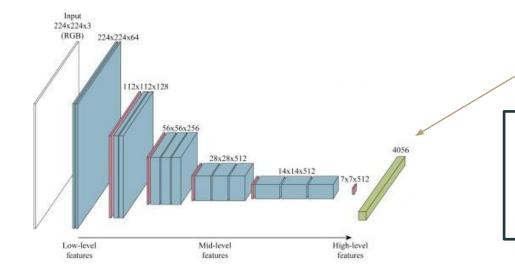


Deep Learning learns layers of features





Deeper layers -> more complex features



Feature vector

$$x_1, x_2, \dots, x_n$$

CLASSIFIER

Categories weights

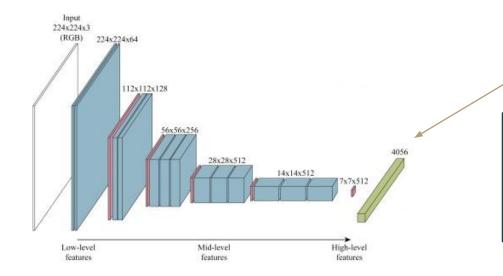
$$w_0^{cat}, w_1^{cat}, \dots, w_n^{cat}$$

$$w_0^{dog}, w_1^{dog}, \dots, w_n^{dog}$$

Categories scores

$$y_{cat} = w_0^{cat} + x_1 w_1^{cat} + \dots + x_n w_n^{cat}$$

$$y_{dog} = w_0^{dog} + x_1 w_1^{dog} + \dots + x_n w_n^{dog}$$



Feature vector

$$x_1, x_2, \dots, x_n$$

CLASSIFIER

Categories weights

$$W_0^{cat}, W_1^{cat}, \dots, W_n^{cat}$$

$$W_0^{dog}, W_1^{dog}, \dots, W_n^{dog}$$

Categories scores

$$y_{cat} = w_0^{cat} + x_1 w_1^{cat} + \dots + x_n w_n^{cat}$$

$$y_{dog} = w_0^{dog} + x_1 w_1^{dog} + ... + x_n w_n^{dog}$$

construct representation ("features extraction") often hard and universal part Work on representations

often simpler and more specific part

Feature extractor "backbone" in transfer learning

https://medium.datadriveninvestor.com/introducing-transfer-learning-as-your-

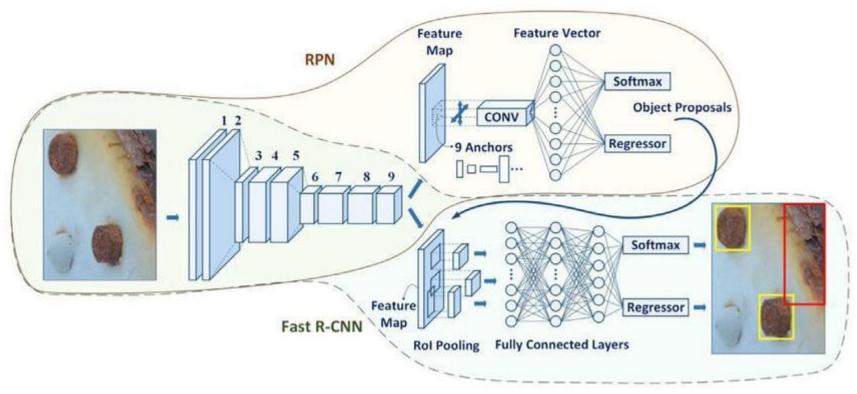
next-engine-to-drive-future-innovations-5e81a15bb567

TRAINING FROM SCRATCH CAR V Input A Task A CONVOLUTIONAL NEURAL NETWORK (CNN) TRUCK X 795% □ 3% BICYCLE X Transfer Learning Backprop TRANSFER LEARNING Input B Task B TRAINED ON CATS AND DOGS CAR ~ PRE-TRAINED CNN **NEW TASK** Frozen

2a4f6bcde3e

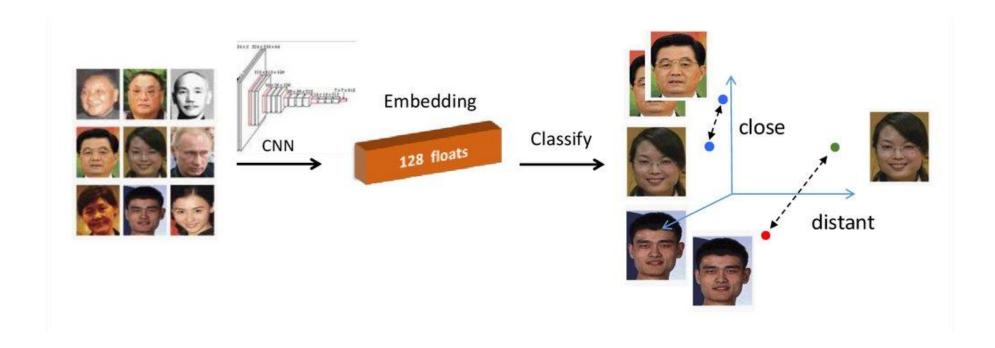
https://medium.com/@subodh.malgonde/transfer-learning-using-tensorflow-5

Feature extractor "backbone" in detection

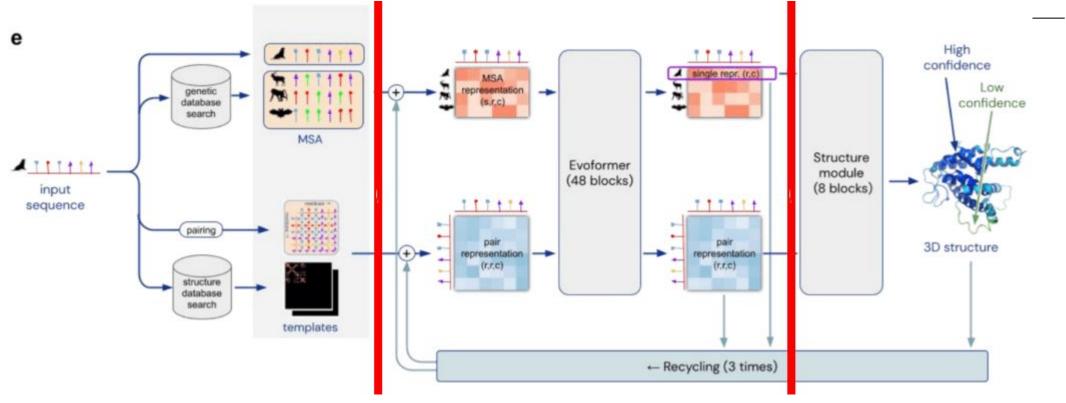


Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., & Büyüköztürk, O. (2018). Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engineering, 33(9), 731-747.

Face recognition

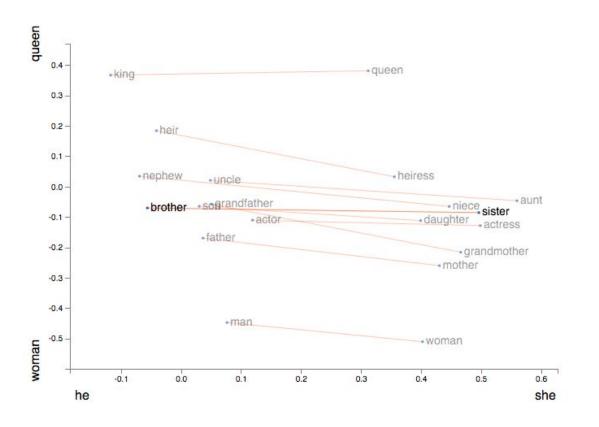


Alphafold



Improve representation layer by layer

Language embeddings



king - man + woman ≈ queen

biking - today + yesterday ≈ biked

Paris - France + Poland ≈ Warsaw

Iraq - Violence ≈ Jordan

Human - Animal ≈ Ethics

President - Power ≈ Prime Minister

Library - Books ≈ Hall

https://wiki.pathmind.com/word2vec

Protein structure

Language

Time series

Face recognition

Images

. . .

Much smaller than input space

Contain information relevant for the task

Unreadeable – black box

We may work in latent space:

- Similar input maps to similar representation (e.g. different view points)
- Similar representations give similar output (VAE)
- Distribution in latent space
- Sometimes directly interpretable directions

Much smaller than input space

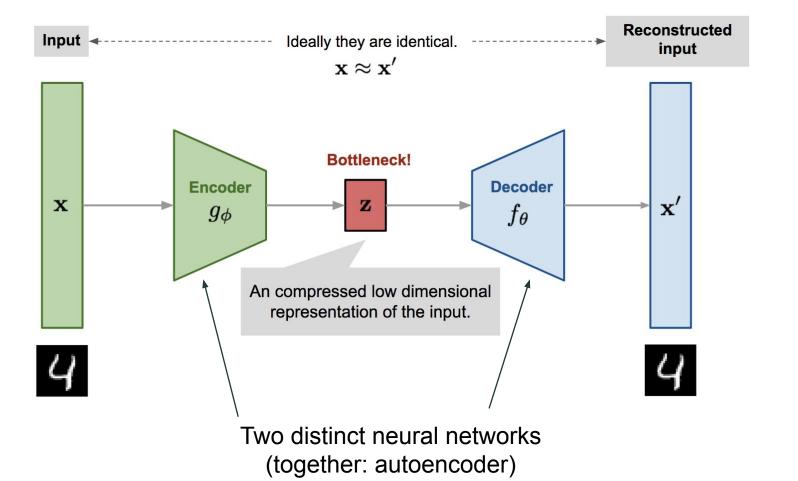
Contain information relevant for the task

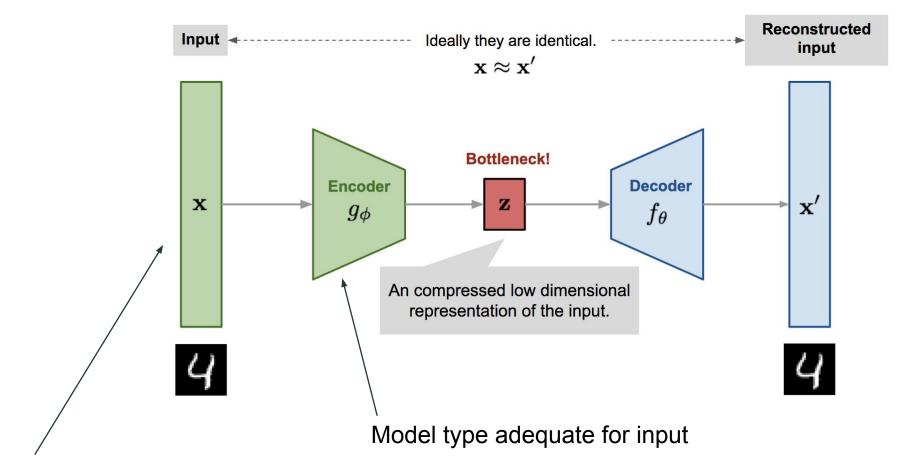
Unreadeable – black box

We may work in latent space: USUALLY BY ADDING PENALTY (extra term in loss function)

- Similar input maps to similar representation (e.g. different view points)
- Similar representations give similar output (VAE)
- Distribution in latent space
- Sometimes directly interpretable directions

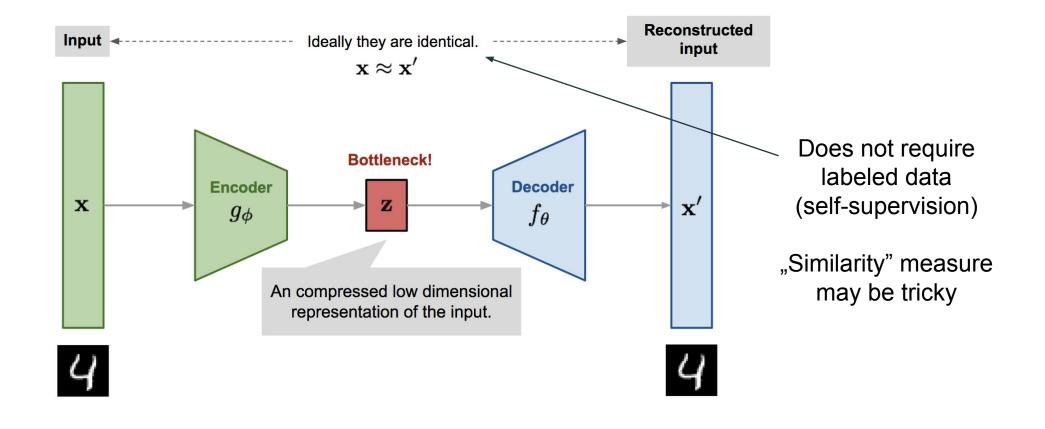
Autoencoders





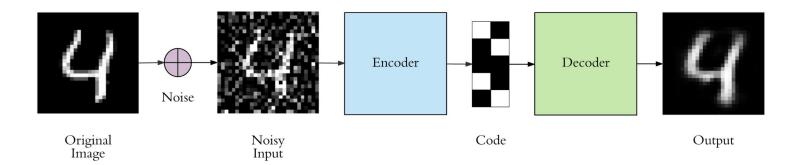
Input:

- image
- tabular data
- time series
- ...

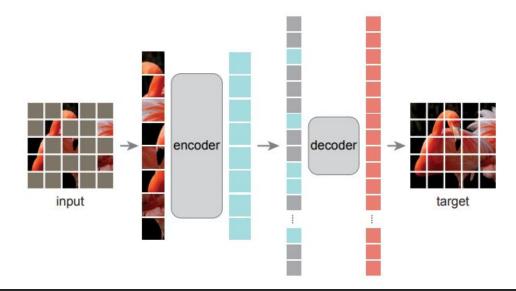


Target different from the input

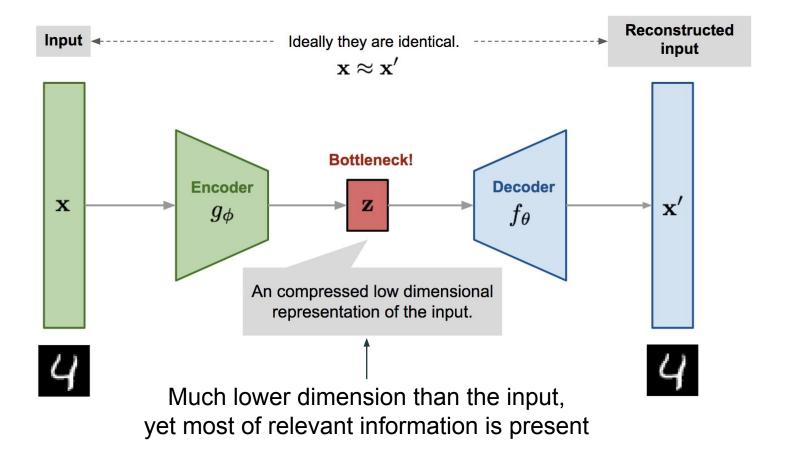
denoising



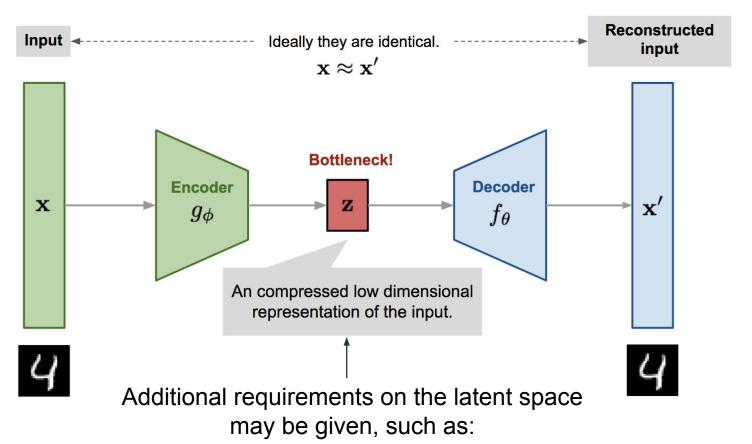
pretraining on masked images





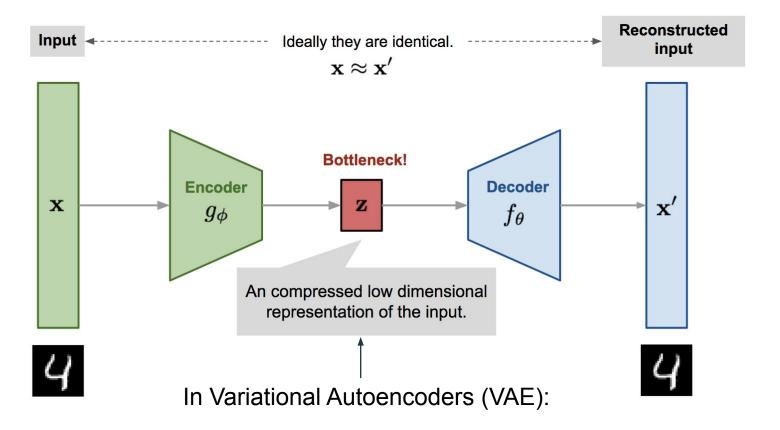


Model learns the effective coding (compression) for given data



- Distribution of latent space representations
- similar latent (z) -> similar reconstruction (x')

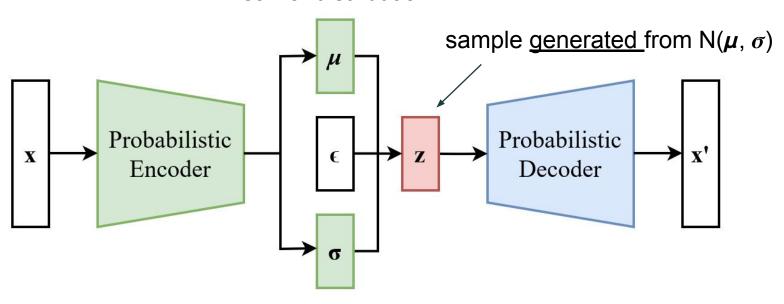
Requirements are usually imposed by adding relevant loss terms



- Distribution in the latent space representations is preferred to be Normal(0,1)
- Latent space vector for reconstruction (decoding) is <u>sampled</u> from vicinity of encoded vector z

VAE

mean of distribution

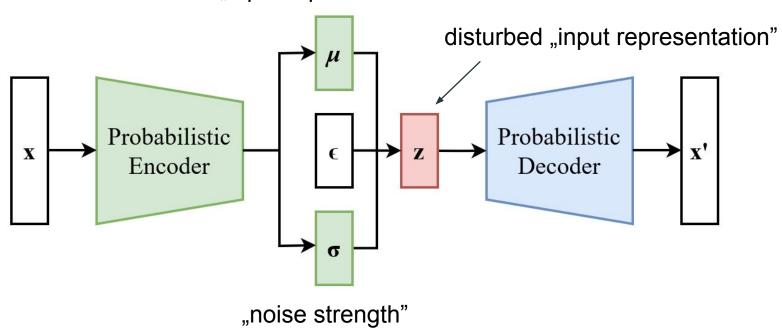


standard deviation

Loss = reconstruction loss + penalty for μ , σ deviation from N(0,1)

VAE

"input representation"



Loss = reconstruction loss + penalty for μ , σ deviation from N(0,1)

Applications

Anomaly detection

Pretraining

Denoising

Downstream analysis (dimensionality reduction), VAE preferred:

- Visualization
- Clustering
- Any model with reduced number of features

Generative model (VAE)

Today workshop

Workshop contents

Introduction to GPU computing

Autoencoder step by step

Anomaly detection

KNN on latent space

Denoising autoencoder

Workshop aims

Feel confident with building and training models in PyTorch

Hands-on experience autoencoders

Be able to use AE for anomaly detection

Get feeling of latent space (representations)

Good luck!