Autoencoders

WORKSHOP ON MACHINE LEARNING TECHNIQUES, AUTUMN 2022

Learning representations in self-supervised manner

"Classical" feature extraction

Time series can be represented by its features: min, max, median, number of peaks etc.

Feature extraction + Classification

Input

Output

Deep Learning learns layers of features

edges

object parts (combination of edges)

object models

Slide by Eduard Tyantov, https://ppt-online.org/354650

Deeper layers -> more complex features

Categories scores

$$y_{cat} = w_0^{cat} + x_1 w_1^{cat} + \dots + x_n w_n^{cat}$$
$$y_{dog} = w_0^{dog} + x_1 w_1^{dog} + \dots + x_n w_n^{dog}$$

.

Feature extractor "backbone" in transfer learning

Image: https://medium.datadriveninvestor.com/introducing-transferlearning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567 Image: https://medium.com/@subodh.malgonde/transfer-learning-using-tensorflow-52a4f6bcde3e

Feature extractor "backbone" in detection

Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., & Büyüköztürk, O. (2018). Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engineering, 33(9), 731-747.

Face recognition

Improve representation leyer by layer

Languageembeddings

king - man + woman \approx queen

biking - today + yesterday \approx biked

Paris - France + Poland \approx Warsaw

https://wiki.pathmind.com/word2vec

Languageembeddings

Protein structure

Language

Time series

Face recognition

Images

...

Much smaller than input space

 $Contain\,information\,relevant\,for\,the\,task$

Unreadable - black box

We may work in latent space:

- Similar input maps to similar representation (e.g., different viewpoints)
- Similar representations give similar output (VAE)
- Distribution in latent space
- Sometimes directly interpretable directions

Much smaller than input space

 $Contain\,information\,relevant\,for\,the\,task$

Unreadable - black box

We may work in latent space: USUALLY BY ADDING PENALTY (extra term in loss function)

- Similar input maps to similar representation (e.g., different viewpoints)
- Similar representations give similar output (VAE)
- Distribution in latent space
- Sometimes directly interpretable directions

Autoencoders

Input:

- image
- tabular data
- time series
- ...

Target different from the input

denoising

pretraining on masked images

Model learns the effective coding (compression) for given data

relevant loss terms

- Distribution in the latent space representations is preferred to be Normal(0,1)
- Latent space vector for reconstruction (decoding) is <u>sampled</u> from vicinity of encoded vector z

VAE

Loss = reconstruction loss + penalty for μ , σ deviation from N(0,1)

VAE

Loss = reconstruction loss + penalty for μ , σ deviation from N(0,1)

Applications

Anomaly detection

Pretraining

Denoising

Downstream analysis (dimensionality reduction), VAE preferred :

- Visualization
- Clustering
- Any model with reduced number of features

Generative model (VAE)

Today workshop

Workshop contents

PyTorch model recapitulation

Introduction to GPU computing

Autoencoder step by step

Anomaly detection

KNN on latent space

Denoising autoencoder

Imposing latent space distribution

Workshopaims

Feel confident with building and training models in PyTorch

Hands-on experience autoencoders

Be able to use AE for anomaly detection

Get feeling of latent space (representations)

Good luck!